Ergodic Theory and Measured Group Theory
Lecture 24

Recall the following thought: treeing are minimal saplings, must they achieve the cost of the equivalence relation?

Poop. Lit E be a pap CBER on (x, y). It a be a (Boat) sapling of E that achicues the cost, ie. $c_{\mu}(E)=C_{\mu}(G)$. Then h is a treeing ac.
Proof.

We had to delete
a positive easier of edge at once al we cun't jest say something like "dilate the least clue tron each cycle" leone "though the result would indeed be a Bone forest (Minimal Subforest), it wont be a graphing
at E : we wed to lo so kt the resulting grape
has the sase components as G. Using Felduan-Meore, ore can show the a Bores version of Zorn's leanna holds fer CBERS, gieldiy a maximal collection l of disjoint uses

What is Bout as a sabot of $x^{<\mathbb{N}}:=\bigcup_{n \in \mathbb{N}} x^{n}$. By maximaling, it should intersect every G-couponeate $n \in \mathbb{N}$ that has a cycle, which is a positively-neasunal set by our corticalictory cssa-ption. Thus, VC ir also positive neasun, hence aenoving one edge (say least) from each gate is τ adeluces the cost of h, a contradiction.

But syaii does wen treeing achieve the cost? Cas't we have twe treeing s of the sade E one hastier than another?

$$
C_{r}\left(T_{1}\right)=\frac{5}{2} \quad \& \quad C_{\mu}\left(T_{2}\right)=\frac{3}{2} ?
$$

Fundament theorem of cost (Gaboriau 1997). Any treeing Tot pip CHER E achieves the cost of E, ie. $c_{\mu}(E)=C_{f}(T)$. In particalcer, any two treeing have equal cost.

Cocollaz (Gaboriac). For each $u \leq \infty$, any freer pap action of \mathbb{F}_{n} induces as orbit eq. mel. of cost $=n$. In partular, for $w \neq n$, the orb. eq. rel, of true pep action of \mathbb{F}_{m} of \mathbb{F}_{m} ane not orbit eguivalat:

Then is a converse to this corollary:

Theorem (Hjorth 2013, My lena on cost achieved), If E is ergodic pomp treeatle and of integer cost $n \in \mathbb{N} \cup\{\infty\}$, then E is incluced b, a tree pap action of \mathbb{F}_{n}.

Tune is an ergodic strengthening of this too:

Ergodic leman oc cst achieved (Millee-Ts) in Hyorthis there, the action of each of the n standard seuecators of \mathbb{F}_{n} can be wade ergodic.

Snooth equiralenu relations. Recall It a Boed eqe rel. E 0 a it. Borl X is called suooth if $E \leqslant_{B} I d_{\mathbb{R}}$, i.e. B Bovel finfim $\pi=X \rightarrow \mathbb{R}$ it. $\forall x_{1}, x_{2} \in X$,

$$
x_{1} E x_{2} \Leftrightarrow f\left(x_{1}\right)=f\left(x_{2}\right) .
$$

For CBER, itronger wosions ane arailable:
Pcop. Le E be a CBER on X. TFAE:
(1) E is snooth.
(2) E culnits a Boncl selector, i.e. a Bacel $s: X \rightarrow X$ s.f. $t_{x}, s(x)$ Ex al $\forall_{x_{1}, k_{2}} \in X, x_{1} E_{x_{2}} \Leftrightarrow s\left(x_{1}\right)=s\left(x_{2}\right)$.
(3) E admits a Boed tranuvosal, i.e. a Beel $Y \leqslant X$ Wht meets every E-clom is excifly one poid.

Proof. This tollors from the Luzin-Novikor usiforuization therrem.

Luzin-Novihov mitionization. let $B \subseteq X \times Y, X, Y$ st. Boel. If cals X-liber over B, wanely, $B_{x}:=\{g \in Y:(x, y) \in B\}$,
is ctbl, Then $B=\bigcup_{n \in \mathbb{N}}$ gaph $\left(f_{n}\right)$ for soce Boad furtions $f_{n}: X \rightarrow Y$.

 and bemuse prop on graph $\left(f_{a}\right)$ is $1-1$, its inage is Boel (lig the Luzir - Souslin).

Heere is another characterizction of snoothuess that I tud most watul.

20-questions claruteriation of smothuen. A CBER E on X is sumoth ift $\exists\left(Q_{n}\right)_{n \in \mathbb{N},} Q_{n} \leq X$ Borel ("suestions") s.f. $\forall x_{1}, x_{2}, x_{1} \in x_{2} \Leftrightarrow \forall_{n}\left(x_{1} \in Q_{n} \Leftrightarrow x_{2} \in Q_{n}\right)$. Proof. \Leftrightarrow let $\left(Q_{n}\right)$ be as is the uppotheris al define $\pi: X \rightarrow 2^{\mathbb{N}}$ by $x \mapsto$ segnence of ansners, i.e. $\left(\mathbb{1}_{Q_{n}}(x)\right)_{u \in \mathbb{N}}$. This is ducry a Dovel rechucion to $=$.
\Rightarrow Lut $\pi: x \rightarrow 2^{\mathbb{N}}$ be a Bael recuction to $=$. Then $a_{n}:=\pi^{-1}\left(\left\{x \in 2^{\mathbb{N}}: x(0)=13\right)\right.$ fit's the dill.

Examples. (a) Finite BERs (i.e. each dan is firite) ine snooth. Proot. Iuppose $X=\mathbb{R}$ al let $s: X \rightarrow X$ by $x \mapsto$ the least element in $[x]_{E}$. This is courd l_{y} Lazin-Novikov.
(b) For any Boel function $f: X \rightarrow Y$, let $\operatorname{ker}(f):=$ $\left\{\left(x_{1}, x_{2}\right) \in X^{2}: f\left(x_{1}\right)=f\left(x_{2}\right)\right\}$, so it's suooth b, elef.
(c) Sinilarity of watrices).
(d) Conjugacy of Bernoulls antouarplism, \& Orasteci's theure.

Poop. Ever esyodic CBER E on (x, y) is μ-nowhere smoolb, i.c. if $\left.E\right|_{Y}>$ mooth then Y is nall.
Prost. Ecgodicity is on. to evez invariant weas. $\pi: X \rightarrow 2^{\mathbb{N}}$ is constant a.e. (remell takeing preinages of letflright subtrees (). Sine each E-clon is ctal, it's uall, so MAA evey inv. reas. function vould take inequ. ivalect poists to the sare element is 2^{N}.

Exagles. (a) E_{0} on $2^{N}: x E_{0 y} \Leftrightarrow \forall_{n}^{\infty} \times(n)=s(u)$.
this ergodic wacet. The vin-tlip easure.
(b) Berwalli shitts: \forall ctbl sep Γ, take the slift $\Gamma^{\top}\left(X^{\Gamma}, \mu^{\Gamma}\right)$. This aution i (strongls) aixing:

$$
\lim _{\gamma \rightarrow \infty} \mu(\gamma \cdot A \cap B)=\mu(A) \mu(B),
$$

Whe $\gamma \rightarrow \infty$ mans $\forall\left\{>0 \quad \forall^{\infty} \gamma \in \Gamma \ldots\right.$
Hence the orb. ey. rel. is ecgodic, so nonsmoth.
(c) Iecationcl cotation $\mathbb{Z}^{\prime} S^{\prime}$ is ersodic \Rightarrow wassuooth.

